Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs.

نویسندگان

  • Steven Zukerman
  • Karen Ackroff
  • Anthony Sclafani
چکیده

Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REVISED 1 Post - oral appetite stimulation by sugars and non - metabolizable sugar analogs 2 in mice : Role of intestinal

18 Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process 19 referred to as appetition. Here we investigated the role of intestinal sodium glucose co20 transporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and non-metabolizable 21 sugar analogs that differ in their affinity for SGLT1 and SGLT3. In Experiments 1 and 2 food22 restricted mice ...

متن کامل

SGLT1 sugar transporter/sensor is required for post-oral glucose appetition.

Recent findings suggest that the intestinal sodium-glucose transporter 1 (SGLT1) glucose transporter and sensor mediates, in part, the appetite-stimulation actions of intragastric (IG) glucose and nonmetabolizable α-methyl-d-glucopyranoside (MDG) infusions in mice. Here, we investigated the role of SGLT1 in sugar conditioning using SGLT1 knockout (KO) and C57BL/6J wild-type (WT) mice. An initia...

متن کامل

Sugar sensing in higher plants.

Sugar repression of photosynthetic genes is likely a central control mechanism mediating energy homeostasis in a wide range of algae and higher plants. It overrides light activation and is coupled to developmental and environmental regulations. How sugar signals are sensed and transduced to the nucleus remains unclear. To elucidate sugar-sensing mechanisms, we monitored the effects of a variety...

متن کامل

Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice.

Most mammals prefer the sweet taste of sugars, which is mediated by the heterodimeric T1R2+T1R3 taste receptor. Sugar appetite is also enhanced by the post-oral reinforcing actions of the nutrient in the gut. Here, we examined the contribution of gut T1R3 (either alone or as part of the T1R3+T1R3 receptor) to post-oral sugar reinforcement using a flavor-conditioning paradigm. We trained mice to...

متن کامل

Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells.

The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmeta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 305 7  شماره 

صفحات  -

تاریخ انتشار 2013